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Abstract— In this paper we present an evolutionary system
using genetic algorithm (GA) for evolving artificial neural
networks (ANNs). Existing genetic algorithms for evolving
ANNs suffer from the permutation problem as a result of
recombination. Here we propose a novel encoding scheme
for representing ANNs which avoids the permutation prob-
lem while efficiently evolving multilayer ANN architectures.
The evolutionary system has been implemented and tested
on a number of benchmark problems in machine learning
and neural networks. Experimental results suggest that the
system shows superiority in performance, in most of the
cases.
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1. Introduction
Evolution has gained popularity as an alternative to clas-

sical search and optimization methods due to its natural
adaptiveness and ANNs have always provided a practical
way of representing a function such as a classifier when
the input data is complex or noisy. The typical approach is
to use a fixed network architecture with random connection
weights, and then use a backpropagation (BP) algorithm that
adjusts the connection weights until the desired accuracy
is achieved. Since in this approach the architecture is con-
strained, there is no opportunity for the learning algorithm
to find a better architecture for the problem. But the infor-
mation processing capability of an ANN is determined by
its architecture. So for different applications the architecture
should be different.

However the problem of designing a near optimal ANN
architecture for an application remains unresolved. Design
of a near optimal ANN architecture can be formulated as a
search problem in the architecture space where each point
represents an architecture. Based on some optimal criteria,
the best performing network has to be selected which is
equivalent to finding the highest point on the search space.
This is where evolutionary algorithms work better than
others because it is less likely to get stuck in a local maxima
due to its strong tendency towards exploration.

This paper is an extension of our previous work (PE-
TENN) [1] which dealt with only single hidden layer ar-

chitectures and was thus, not applicable to all non-linear
problems. Here we describes an evolutionary system, i.e.,
EMNNPET (Evolving Multilayer Neural Networks using
Permutation free Encoding Technique), for evolving mul-
tilayer feedforward ANNs which can be applied to any kind
of non-linear problem. The algorithm combines architectural
evolution with weight learning.

2. EMNNPET

EMNNPET uses a genetic algorithm for evolving ANNs.
The encoding scheme is designed to avoid the permutation
problem and make the whole process more efficient. The
recombination operator may be normal or mixed as described
later. Such operators ensure automation in the addition or
deletion of nodes and/or links from the parents. As a result,
the whole process is free from user interaction. Mutation
operators are also applied randomly with a very small
probability.

The steps of the algorithm are as follows:

1) Generate an initial population of N networks at random
each of which is free from permutation problem. Nodes
and connections are uniformly generated at random
within a certain range.Weights are also generated uni-
formly at random within a certain range.

2) Train each network partially for certain number of
epochs using BP.

3) If stopping criteria(described later on) is met, then stop
the process and identify the best network. Otherwise go
to step 4.

4) Do a random shuffle on current population and pair
them up. The recombination operator and mutation
operator is applied on each pair to obtain two offspring.
Ignore the offspring that introduces permutation prob-
lem.

5) The best N individuals are transferred to the next
generation (a variant is to use “Elitist replacement”
scheme where local competition is held instead of
global competition, and thus discouraging a greedy
approach).

6) Go to step 2.
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Fig. 1: An ANN and its genotype in the proposed encoding
scheme.

2.1 Encoding Scheme
The encoding scheme is direct in nature where archi-

tecture is encoded. The proposed encoding scheme ensures
that neural networks with behaviorally equivalent structure
will produce similar genotypic representations. In this paper
we consider only three-layer perceptrons. So there are four
layers of nodes: input layer, first hidden layer, second hidden
layer and output layer. The input and output layers are fixed
for a particular problem. Only the two hidden layers evolve.
The two hidden layers are represented by a m∗n matrix M[
], where m (row) represents the number of nodes in the
first layer and n (column) represents the number of nodes
in the second layer. Each element of the matrix represents
a decimal value defined by a bit string corresponding to
the connections with the input and output nodes. One bit is
needed for each of the input and output nodes. The value
‘1’ means a connection exists and ‘0’ means no connection.

The matrix element M[i , j] can be-
• Non-zero positive value which means that there is a

connection between the i-th node of the first hidden
layer and the j-th node of the second hidden layer.

• Zero value which means that there is a no connection
between the i-th node of the first hidden layer and the
j-th node of the second hidden layer.

So for a non-zero value M[i , j] represents a bit string
corresponding to not only the information about the con-
nections with the input nodes and the i-th node of the first
hidden layer, but also the connections with the j-th node of
the second hidden layer and the output nodes. Fig. 1 shows
the encoding technique for an ANN.

2.2 Fitness Evaluation
The fitness of each individual is solely determined by the

inverse of an error function E suggested by

E = 100
Omax − Omin

Tn

T∑

t=1

n∑

i=1

(Y (i, t) − Z (i, t))2 . (1)

Here, Omax = maximum value of output coefficients, Omin =
minimum value of output coefficients, n = number of output
nodes, T = number of patterns, Y (i, t) = actual outputs of
nodes, Z (i, t) = desired outputs of nodes. The error measure
is less dependent on the size of the validation set and the
number of output nodes.

2.3 Parent Selection
The first step of recombination is selection of parents.

Here uniform selection is used i.e., each individual has
exactly the same probability of being selected as a parent.
To implement this uniform selection the population is ran-
domly shuffled and parents are selected by taking pairs of
individuals.

2.4 Recombination Operator
Two types of recombination operator are applied: normal

and mixed. The recombination is applied to the matrix
representation of the two hidden layers. Here the column
number of the two matrices must be equal. So, incase of
unequal column number a zero column vector (or vectors)
[0 0 0 ...]′ (row number same as previous) is appended to
the rightmost end of the smaller matrix.

2.4.1 Normal Recombination Operator
In this scheme the number of crossover points are random

and limited to a highest value. Then alternate parts are taken
from the parents to build up the offspring. Fig. 2 shows how
child-1 and child-2 are produced from parent-1 and parent-2
using normal recombination operator.

2.4.2 Mixed Recombination Operator
In this scheme, the genotypes(hidden nodes) of the

two parents are mixed by concatenation. Then a random
crossover point is taken and the two portions correspond to
the two offspring. Fig. 3 shows how child-1 and child-2 are
produced using mixed recombination operator.

2.5 Evolution of Network Architecture
The recombination operators ensure automation in the

following forms:
• Connections (links) addition / deletion
• Nodes addition / deletion

The following sections describe the scenarios with examples.

2.5.1 Connection Addition / Deletion
In the proposed encoding scheme, the nonzero decimal

values correspond to how 1st layer hidden nodes are con-
nected to the inputs and how the 2nd layer hidden nodes are
connected to the outputs. So any change in the encoded value
implies alterations in those connections. Such an example
is shown in Fig. 4 where the genotypes of the children are
different to those of their parents and this denotes connection
add/delete as described above.
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2.5.2 Node Addition / Deletion
Nodes will be added or deleted from the parent ANN if

the following conditions are met:
• The parents have unequal number of nodes in the 1st

and/or 2nd hidden layer.
• Multiple crossover points are used.

This is shown in Fig. 4 where parent-1 has a total of six
hidden nodes and parent-2 has a total of nine hidden nodes.
Here two crossover points are used. Now after recombination
both child have a total of eight hidden nodes. So the number
of hidden nodes in the children is different to that in the
parents and hence node add/delete is possible in such type
of recombination.

2.6 Mutation
The mutation operator may be applied on the offspring

after recombination. The mutation operators are applied with
very small probabilities. The following mutation operators
can be applied on the offspring: Firstly, a new hidden node
may be added to the network. The links of this node with the
input and output nodes are randomly generated. The weights
of the links are also random within a certain range. Secondly,
a hidden node of the network may be selected randomly and
then deleted from the network. The probability of deleting a
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Fig. 4: (a) The two parents used in recombination (b) Recombina-
tion using multiple crossover points. This shows how addition and
deletion of connections and nodes takes place (c) The two offspring
produced.

node is more than that of adding it since we want to reduce
the size of the network if possible. Thirdly, the network may
be mutated by deletion of a link. Again the link is chosen
randomly. And fourthly, the weight of a randomly selected
link may be changed randomly within a certain range.

2.7 Parent Replacement
For a population of N individuals after recombination

and mutation the total number of individuals can become
at most 2N (given that no permutation occurs). Among
these individuals the best N individuals are transferred to
the next generation. As a variant we can also use “Elitist
replacement” scheme where a competition is held between
the two offspring and their two parents, and the two winners
are transferred to the next population, thus discouraging a
greedy approach in the replacement of individuals.

2.8 Permutation Problem
The main aspect of the proposed encoding scheme is

the solution to permutation problem. The following section
describes the concept of permutation problem and the next
one illustrates the solution with example.
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Fig. 5: Example of permutation problem. (a) An ANN and its
genotypic representation. (b) Another ANN identical to that given
in (a) with different genotypic representation.

2.8.1 Concept of the Permutation Problem

The evolution of ANN architectures in general suffers
from the permutation problem [2], [3]. It is caused by
the many to one mapping from genotypes to phenotypes
since two ANNs which order their hidden nodes differently
may have different genotypes but are behaviorally (i.e.,
phenotypically) equivalent. With a purely feed-forward net,
there is no significance to the order of the hidden units. This
means that the genetic coding is redundant. This problem is
depicted in Fig. 5 where a direct encoding scheme is used.
Here two networks are shown which are identical except
that their nodes in the hidden layer are in different order.
Permutation problem makes the evolution inefficient as the
population may have several members that are identical in
structure but different in genotypic representation. It also
complicates the task for crossover operators to produce
highly fit offspring.

2.8.2 Solution to Permutation Problem

It is obvious that if two hidden nodes have same bit
patterns and hence same values then they have similar
connections. Now consider two structurally similar ANNs
with their hidden nodes in different order. The matrix
representation for their hidden layers will also be similar but
in different orientation. In our encoding scheme, the matrix
elements are sorted so that M[1 , 1] contains the minimum
value and M[row-number , column-number] contains the
maximum value. Then these two ANNs will produce one-
to-one mapping from genotypes to phenotypes, thus solving
the permutation problem.

For example, the two ANNs shown in Fig. 6 are similar
in structure but their hidden nodes are in different order.
Thus their directly encoded matrix representation (initial
genotype) are also different. But in the proposed encoded
scheme the genotypes are sorted and finally the two ANNs
produce same genotype.
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Table 1: Characteristics of the Data sets

Data set Number of Number of Number of
examples input attributes output classes

Breast cancer 699 9 2
Diabetes 768 8 2

Heart disease 303 35 2
Thyroid 7200 21 3

3. Experimental Studies
This section evaluates EMNNPET’s performance on some

of the well known benchmark problems. These problems
have been the subject of many studies in NNs and machine
learning.

3.1 The Medical Diagnosis Problems
EMNNPET was applied to four classical classi-

fication problems in the medical domain i.e., the
breast cancer problem, the diabetes problem, the heart
disease problem, and the thyroid problem. All the
datasets were obtained from the University of Califor-
nia, Irvine (UCI) machine learning benchmark reposi-
tory, available at http://ftp.ics.uci.edu/pub/machine-learning-
databases/. Detailed descriptions of data sets are also avail-
able at this site. The characteristics of the data sets are
summarized in Table 1.

3.2 Experimental Setup
All the data sets used have been partitioned into three

sets: a training set, a validation set, and a testing set. In
most case, the partitioning is 50%-25%-25% except for the
thyroid problem since it contains huge amount of examples.
The training set is used to train ANN by backpropagation
algorithm; the validation set is used to evaluate the fitness
and checking over fitness of an ANN and the testing set
is used to evaluate the performance of the system. In the
following experiments, each data set was partitioned as
shown in Table 2.



Table 2: Data set partitions

Number of Number of Number of
Data set Training Validation Test

examples examples examples
Breast cancer 350 175 174

Diabetes 384 192 192
Heart disease 152 75 76

Thyroid 2514 1288 3428

It, however, should be kept in mind that such partitions do
not represent the optimal ones [4]. For each of the problems,
the input attributes are discrete on a scale 0 - 1 (real)
and output attribute is binary valued. The output attributes
of all the problems were encoded using a 1-of-m output
representation for m classes.

The initial population consists of a random number of in-
dividuals. Each individual is an ANN of two hidden layers as
it is sufficient to solve all non-linear problems [5]. Initially,
the number of nodes in a hidden layer is uniformly chosen
between minimum_value =(input_node+output_node)∗0.5
and maximum_value =(input_node+output_node)∗1.5. Ini-
tially, connections between the two hidden layers and the
1st hidden layer and input layer are randomly created. The
output layer is fully connected. Initial weights are assigned
between -1.0 to 1.0.

Most of the parameters used here are not meant to be
optimal. But, these are set after certain phases of tuning
during several runs. The activation function used is

sigmoid =
1

(1 + e−x)
. (2)

Learning rate of the back-propagation algorithm is set to 0.5.
No momentum factor is used. The number of epochs is set
to 10-20 for initial training and 5-10 for partial training. The
stopping criterion for the algorithm is based on a predefined
threshold values. If the average error does not fall below
the threshold after a maximum number of iterations (300 or
500), the evolution is stopped at that point.

3.3 Experimental Results
Tables 3–4 show the results of EMNNPET over 30 inde-

pendent runs on the four different problems. The error in
the tables refers to the error defined by fitness function E
(1). The error rate refers to the percentage (%) of wrong
classifications produced by the evolved ANN’s.

Table 3 summarizes the average, standard deviations (SD),
minimum, maximum number of hidden nodes, connections
and generations for each set of problems. From the table we
can see that the number of generations required to meet the
stopping criteria is quite low.

Table 4 shows the mean, standard deviation, minimum and
maximum value of validation and testing errors for the four
problems. Most of the errors are small and are competitive
with the errors provided by existing other algorithms.

In order to observe the evolutionary process in EMN-
NPET, following graphs Figs. 7–8 show the evolution of
the error and number of cumulative permutations detected
over 30 runs for the four medical diagnosis problems.

The evolutionary process is quite interesting. The number
of connections in the ANN decreases and increases through
out the process signifying that the recombination operator
works as a exploration operator to find the best suitable
network. Similarly as the generation proceeds the amount of
error decreases significantly which implies that the algorithm
in moving towards the best structure for the corresponding
problem. As we can see in the figures that error drops quite
quickly to the lowest value signifying the effectiveness of
the recombination and mutation process. Moreover we can
see from Fig. 8 that the number of permutations detected in
each generation is quite significant and hence the steep rise
in the curves.

3.4 Comparison with Other Works
The aim of this paper is not just, to compare this algorithm

with other algorithms but to establish a permutation free
encoding scheme that could be used in existing algorithms.
Moreover, direct comparison with other evolutionary ap-
proaches of designing ANN is very difficult due to the lack
of such results. Instead, the best available results, regardless
of whether the algorithm used was an evolutionary, a BP or
a statistical approach, are used in the comparison.

This section compares experimental results of EMNNPET
with those of FNNCA [6], Prechelt’s hand designed best NN
(HDANNs) [7], EPNet [8], Bennet and Mangasarian’s [9]
MSM1, Schiffmann [10], CNNE [4], acasper [11] , AMGA
[12], COVNET [13], REANN [14], MCA [15]. EMNNPET
has been compared to other works in terms of Average test
error rate (TER) over 30 runs, for each of the problems
in the following tables. Since not all algorithms have been
tested on the same set of problems, therefore only those that
are available for a given problem have been compared to
EMNNPET.

Table 3: Architecture of Evolved Neural Networks

Measurement Number of Number of Number of
connections hidden nodes generations

Breast Mean 86.6667 14.1 4.7755
Cancer SD 2.3094 1.3152 3.3619
Data Min 84 11 1
Set Max 88 16 23

Heart Mean 472.90 40.21 86.04
Disease SD 55.87 14.02 62.7336

Data Min 309 23 23
Set Max 676 116 300

Diabetes Mean 95.5 14.6 5.9591
Data SD 8.0436 1.4142 1.8925
Set Min 84 11 3

Max 104 17 12
Thyroid Mean 304.25 23.5 35.67

Data SD 11.19 5.29 3.08
Set Min 277 14 32

Max 391 29 41
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Fig. 7: Evolution of ANN’s error for (a) breast cancer problem (b)
heart disease problem (c) diabetes problem (d)thyroid problem.
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Table 4: Accuracies of Evolved Artificial Neural Networks

Measure Validation Set Validation Set Test Set Test Set
-ment Error Error rate Error Error rate

Breast Mean 1.7533 2.3657 0.9989 1.0344
Cancer SD 0.0373 0.4427 0.1539 0.5010
Data Min 1.6280 1.7142 0.6026 0.0
Set Max 1.7975 3.4285 1.3735 2.2988

Heart Mean 11.4932 12.6315 5.7773 6.9866
Disease SD 0.2409 1.3157 1.5328 2.2400

Data Min 10.6745 9.2105 1.6981 1.3333
Set Max 11.7702 15.7895 10.7219 12

Diabetes Mean 15.5915 21.7395 16.4768 24.4895
Data SD 0.1438 1.2272 0.3977 1.8735
Set Min 15.18 20.8333 15.6787 19.2708

Max 15.7481 24.4792 17.1544 29.1667
Thyroid Mean 0.8250 1.6111 0.8795 1.5185

Data SD 0.0381 0.2525 0.1436 0.2143
Set Min 0.7750 1.2777 0.6775 1.2222

Max 0.8676 1.8888 0.9995 1.7222

Table 5: Comparing EMNNPET in terms of Average TER
with other algorithms for the breast cancer problem

EMNNPET FNNCA HDANNs EPNet CNNE AMGA REANN
TER 1.03 1.45 1.15 1.37 1.3 1.3 3.72

Table 6: Comparing EMNNPET in terms of Average TER
with other algorithms for the heart disease problem

EMNNPET MSM1 HDANNs EPNet CNNE AGMA COVNET MCA
TER 6.98 16.53 14.78 16.7 13.4 18.87 14.26 18.91

Table 7: Comparing EMNNPET in terms of Average TER
with other algorithms for the diabetes problem

EMNNPET HDANNs EPNet CNNE acasper AGMA REANN MCA
TER 24.4 21.35 22.4 19.8 20.31 21.97 23.44 20.99

Table 8: Comparing EMNNPET in terms of Average TER
with other algorithms for the thyroid problem

EMNNPET Schiffmann HDANNs EPNet AGMA
TER 1.51 2.5 1.28 1.63 2.44

Table 5 shows that EMNNPET achieves the best result of
1.03% TER. Table 6 shows that EMNNPET has the lowest
average testing error rate among all other algorithms for
the heart disease problem. It outperforms the rest by quite
a significant margin. This due to recombination operators
which imposes very few constraints on the evolution of
ANNs. Table 7 shows that EMNNPET performed worst and
CNNE performed best among the algorithms for diabetes
problem. But CNNE is not a genetic approach but rather
an evolutionary ensemble approach. According to Table 8,
EMNNPET performs the second best among all the other
algorithms for the thyroid problem. This superiority in
performance is due to the exploration capability of the
recombination operators.

4. Conclusion
In this paper we have provided an innovative encoding

scheme for the representation of ANNs that can solve the
permutation problem. A mixed recombination operator has

also been proposed. Another feature is the automation of
addition or deletion of nodes or links during the recombina-
tion process. Our algorithm, EMNNPET has been tested on
a number of benchmark problems and it has shown better
results compared to other algorithms in most of the cases.
EMNNPET imposes very few constraints on feasible ANN
architectures; thus explores a huge search space of different
ANNs.

As future work, we want to concentrate on the recombi-
nation process because it can be done in different ways and
the effect of those methods can give better results. Specially
we are interested in minimizing the network size without
compromising much of the ANN’s performance.
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