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Abstract. This paper presents a new evolutionary system using genetic
algorithm for evolving artificial neural networks (ANNs). The proposed
algorithm is “Permutation free Encoding Technique for Evolving Neural
Networks”(PETENN) that uses a novel encoding scheme for representing
ANNs. Existing genetic algorithms (GAs) for evolving ANNs suffer from
the permutation problem, resulting from the recombination operator.
Evolutionary Programming (EP) does not use recombination operator
entirely. But the proposed encoding scheme avoids permutation problem
by applying a sorting technique. PETENN uses two types of recombi-
nation operators that ensure automatic addition or deletion of nodes or
links during the crossover process. The evolutionary system has been
implemented and applied to a number of benchmark problems in ma-
chine learning and neural networks. The experimental results show that
the system can dynamically evolve ANN architectures, showing compet-
itiveness and, in some cases, superiority in performance.

Keywords: Permutation problem, genetic algorithm (GA), evolutionary
programming (EP), artificial neural network(ANN).

1 Introduction

Artificial Neural Networks (ANNs) provide a practical way of representing a
function such as a classifier when the input data is complex or noisy. Typically
the ANN representation is learned by creating fixed network architecture with
random connection weights, and then introducing training data to a backprop-
agation (BP) algorithm that adjusts the connection weights until the desired
accuracy is achieved. This fixed-architecture BP learning method works well for
simple functions of simple data. However, if ANNs are to be used to represent
complicated functions of very complex data, the network structure will need to
be more complex. Since the architecture is constrained, there is no opportunity
for the learning algorithm to find a better architecture for the problem. BP be-
comes impractical if there are too many nodes or too many layers. BP tends to
converge to local maxima.
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An alternate approach to ANN learning that may not have these disadvan-
tages is the evolutionary algorithm. Evolution is less likely to get stuck in local
maxima because of its strong tendency toward exploration. Evolution of ANN
can be seen as a two-fold challenge; finding the topology of the ANN with opti-
mal search space, and adjusting the weight values with a view to reaching that
global optimum. Devising such an algorithm for a given problem has been a
very challenging task. Many consequent problems have arisen in constructing
such ANNs, yet to be unresolved. Consequently, the challenge is open for the
ANN researchers for decades.

2 PETENN

PETENN [1] uses a genetic algorithm for evolving ANNs. The encoding scheme
is so designed to avoid permutation problem and make the whole process more
efficient. The algorithm uses elitist recombination scheme. The recombination
operator may be normal or mixed. Such operators ensure automation in the
addition or deletion of nodes and/or links from the parents. As a result, the
whole process is free from user interaction. Mutation operators are also applied
randomly with a very small probability.

The steps of the algorithm are as follows:

1) Generate an initial population of N networks at random each of which is free
from permutation problem.

2) Train each network partially for certain number of epochs using BP
algorithm.

3) If stopping criteria is met, then stop the process and identify the best net-
work. Otherwise go to step 4.

4) Perform a random shuffle on current population (networks) and pair them
up. The recombination operator and mutation operator is applied for each
pair to obtain two offspring. Ignore the offspring that introduces permutation
problem.

5) A competition is performed between the offspring and their parents. The
two winners are transferred to the next population.

6) Go to step 2.

2.1 Encoding Scheme

The main objective of the proposed encoding scheme is to ensure that neural
networks with behaviorally equivalent structure will produce similar genotypic
representations. This is a kind of direct encoding scheme where architecture is
encoded. This paper concentrates on only a single hidden layer. So there are three
layers of nodes: input, hidden and output. Each hidden node of an ANN has a
bit pattern corresponding to the connections with the input and output nodes.
One bit is needed for each of the input and output nodes. The value ‘1’ means
a connection exists and ‘0’ means no connection. This bit pattern will produce
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Hidden node Bit String Decimal Value
1

2

1 1011 11

2 0111 7

Genotype : 11 7

Fig. 1. An ANN and its genotype in the proposed encoding scheme

a decimal value for that hidden node. Fig. 1 shows the encoding technique for
an ANN with two hidden nodes. There are 3 input nodes and 1 output node.
So 4 bits will be needed to encode each hidden node’s connection structure. The
first hidden node is not connected to the second input node but has links with
all others. So the bit pattern is 1011 and the corresponding decimal value is 11.
Similarly, the second hidden node’s bit pattern is 0111 and decimal value 7. Now
these two values are sorted and the genotype for the ANN is “7 - 11”. So the
structural information of each hidden node is encoded in this scheme.

2.2 Fitness Evaluation and Selection Mechanism

The fitness of each individual is solely determined by the inverse of an error
function E suggested by [3]

E = 100
Omax − Omin

Tn

T∑

t=1

n∑

i=1

(Y (i, t) − Z (i, t))2 . (1)

Here, Omax = maximum value of output coefficients, Omin = minimum value
of output coefficients, n = number of output nodes, T = number of patterns,
Y (i, t) = actual outputs of nodes, Z (i, t) = desired outputs of nodes.

The error measure is less dependent on the size of the validation set and the
number of output nodes.

2.3 Recombination

The first step of recombination is selection of parents. Here “Elitist recombina-
tion” is used where the population is randomly shuffled and parents are selected
by taking pairs of individuals. This corresponds to a uniform selection where
each individual has exactly same probability of being selected as a parent. The
recombination and replacement strategy are described in step 4 and 5 of the
algorithm. It is found that instead of global competition, local competition is
held and thus discouraging the greedy approach.

2.4 Recombination Operator

Two types of recombination operator are applied: normal and mixed. The re-
combination is applied to the hidden nodes of the parents.
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Normal Recombination Operator: In this scheme, the number of crossover
point is random and limited to a highest value. Alternate parts are taken from
the parents to build up the offspring. Fig. 2(a) shows how child-1 and child-2
are produced from parent-1 and parent-2 using normal recombination operator.

Mixed Recombination Operator: In this scheme, the genotypes(hidden
nodes) of the two parents are mixed by concatenation. Then a random crossover
point is taken and the two portions correspond to the two offspring. Fig. 2(b)
shows how child-1 and child-2 are produced using mixed recombination operator.

Parent 1

Parent 2

Child 1

Child 2

Concatenation

Parent 1

Parent 2

Child 1

Child 2

( a ) ( b )

Fig. 2. Schematic representation of (a)normal recombination (b) mixed recombination

2.5 Automation

The recombination operators will ensure automation through connection (link)
addition or deletion and node addition or deletion. The following sections de-
scribe the scenarios with examples.

Connection Addition / Deletion: In the proposed encoding scheme, the
values correspond to how hidden nodes are related to their connections with the
input and output nodes. So any change in the encoded value implies alterations
in those connections. This scenario is applicable to the recombination operator
where genotypes of the children are different from their parents. Such an example
is shown in Fig. 3.

Node Addition / Deletion: Nodes will be added or deleted from the parent
ANN if parents have different number of hidden nodes and multiple crossover
points are used. This is shown in Fig. 3(b) where parent-1 has three hidden
nodes and parent-2 has five hidden nodes. Here two crossover points are used.
Now after recombination both children have four hidden nodes.

2.6 Mutation

After recombination, the mutation operator may be applied on the offspring
before a competition takes place among the parents and their offspring. The
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mutation operators are applied with certain probabilities. The following muta-
tion operators can be applied on the offspring: Firstly, a new hidden node may
be added to the network. The links and their corresponding weights of this node
with the input and output nodes are randomly generated. Secondly, a hidden
node of the network may be randomly deleted. The probability of adding a node
is more than that of deleting it. Thirdly, the network may be mutated by dele-
tion of a randomly chosen link. And finally, the weight of a randomly selected
link may be changed within a certain range.

2.7 Solution to the Permutation Problem

In general, the evolution of ANN architecture suffers from the permutation prob-
lem [4], [5] which is caused by the many-to-one mapping from genotypes to phe-
notypes. It is obvious that if two hidden nodes have the same bit patterns and
hence same values, they have similar connections with the input and output
nodes. Now consider two structurally similar ANNs with their hidden nodes in
different order (Fig. 4). The bit patterns for their hidden nodes will also be sim-
ilar but in different order. In our encoding scheme, the values are sorted to get
the final sequence. So those two ANNs will produce one-to-one mapping from
genotypes to phenotypes, thus solving the permutation problem.

3 Experimental Studies

This section evaluates PETENN’s performance on some of the well known bench-
mark problems. These problems have been the subject of many studies in NNs
and machine learning.

3.1 The Medical Diagnosis Problems

PETENNwasappliedto four real-worldproblems inthemedicaldomaine.g.,breast
cancer problem, diabetes problem, heart disease problem, and thyroid problem.All
the datasets were obtained from the University of California, Irvine (UCI) machine
learning benchmark repository, available at http://ftp.ics.uci.edu/pub/machine-
learning-databases/.The characteristics of thedata sets are summarized inTable 1.

Table 1. Characteristics of the Data sets

Data set No. of examples No. of input No. of output
attributes classes

Breast cancer 699 9 2
Diabetes 768 8 2

Heart disease 303 35 2
Thyroid 7200 21 3
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3 7 11 15

Parent 1 Parent 2

Parent 1

Parent 2

Child 1

Child 2

511 7 3

3 7 11

11 7 15 5 3

3 7

11 7 11

15 5

3

Node Added

Node 
Deleted

Crossover
Point

Child 1 Child 2

3 7 15 5 11 7 11 3

( a )

( b )

( c )

Fig. 3. (a) The parents used in recombination (b) Recombination using multiple
crossover points (c) The two offspring produced

3.2 Experimental Setup

All datasets used have been partitioned into three sets: training set, validation
set, and testing set (Table 2). In most case, the partitioning is 50%-25%- 25%
except for the thyroid problem because it contains huge learning data. For each
problem, the input attributes are normalized between 0 and 1 (real) and out-
put attribute is binary valued. The output attributes of all the problems were
encoded using a 1-of-m output representation for m classes.

The genetic population consists of random number of individuals. Each in-
dividual is an ANN of one hidden layer as it is sufficient to solve all non-
linear problems [6],[7]. Initially, number of nodes in the hidden layer is uni-
formly chosen between minimum value =(input+output)∗0.5 and maximum
value =(input+output)∗1.5. Initially, connections between the hidden layer and
input layer are randomly created. The output layers are fully connected. Initial
weights are assigned between -1.0 to 1.0. Activation function used is

sigmoid =
1

(1 + e−x)
. (2)

Learning rate of the back-propagation algorithm is set to 0.5. The number of
epochs is set to 10-20 for initial training and 5-10 for partial training. The
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Genotype (bitstring) : Genotype (bitstring) :111    101 101    111

Genotype (sorted) : 5 7 5 7Genotype (sorted) :

( a ) ( b )

Fig. 4. Similar ANNs with different orientation

Table 2. Dataset partitions

Data set Training data Validation data Test data
Breast cancer 350 175 174

Diabetes 384 192 192
Heart disease 152 75 76

Thyroid 2514 1258 3428

stopping criterion for the algorithm is based on a predefined threshold value. This
value is different for different problems. If the average error does not fall below
the threshold after maximum number of iterations (300 or 500), the evolution is
stopped at that point.

3.3 Experimental Results

This section presents the results of PETENN over 30 independent runs on the
four different problems. The error in the table refers to the error defined by
the fitness function E (1). The error rate refers to the percentage of wrong
classifications produced by the evolved ANN’s.

Table 3 summarizes the average, standard deviations(SD), minimum, maxi-
mum number of hidden nodes, connections and generations for each set of prob-
lems. It also shows the mean, standard deviation, minimum and maximum value
of validation and testing errors for the four problems. Most of the errors are quite
small.

In order to observe the evolutionary process in PETENN, Figs. 5–6 show the
evolution of the numbers of connections and the error (inverse of accuracy) of the
best ANN over 30 runs for the four medical diagnosis problems. The evolutionary
processes are quite interesting. The number of connections in the ANN randomly
decreases and increases through out the process signifying the recombination
operator. The recombination operator actually serves as the process of exploring
the population to find the best suitable network. Similarly as the generation
proceeds, the amount of error decreases significantly which implies that the
algorithm is moving towards the best structure. As we can see in the figures
that error drops quite quickly to the lowest value showing the effectiveness of
the recombination and mutation process.
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Fig. 5. Evolution of ANN’s connection
for four problems (a) breast cancer prob-
lem (b) heart disease problem (c) diabetes
problem (d)thyroid problem
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Table 3. Architecture and Accuracy of Evolved Neural Networks

No. of No. of No. of Validation Validation Test Set Test Set
connections hidden nodes generations Set Error Set Error Error rate

Error rate
Breast Mean 93.9 11.78 28.56 2.3930 3.4057 2.4451 3.3678
Cancer SD 15.32 1.84 17.85 0.1076 0.6460 0.3682 0.8368
Data Min 6 9 11 2.0782 2.2857 1.7539 1.1494
Set Max 119 16 114 2.4991 4.5714 3.2381 5.1724

Heart Mean 929.98 34.28 64.56 13.4517 17.8421 5.0392 5.4399
Disease SD 168.17 6.02 20.59 0.0476 1.2934 0.4820 1.5740
Data Min 698 26 33 13.3033 15.7895 4.1711 2.6667
Set Max 1284 51 117 13.4996 21.0526 6.5164 9.3333

Diabetes Mean 78 13.06 62.36 15.8284 24.4479 17.7376 28.4374
Data SD 25.49 3.37 48.06 0.1040 1.8114 0.9997 2.8298
Set Min 24 6 19 15.5802 20.8333 15.6096 19.2708

Max 150 21 292 15.9944 28.1250 20.3054 35.4167
Thyroid Mean 465.61 23.5 35.67 4.4709 7.9014 3.9806 7.0390

Data SD 89.45 5.29 3.08 0.0145 0.1135 0.0191 0.1217
Set Min 282 14 32 4.4546 7.7106 3.9565 6.8214

Max 655 29 41 4.4937 8.0286 4.0201 7.2345

3.4 Comparison with other Works

Direct comparison with other evolutionary approaches of designing ANN is very
difficult due to the lack of such results. Instead, the best and latest results
available, regardless of whether the algorithm used was an evolutionary, a BP
or a statistical one, are used in the comparison. However, the aim of this paper
is not just to compare this algorithm with all other algorithms but to establish
a permutation free encoding scheme that could be used in existing algorithms.
This section compares experimental results of PETENN with those of FNNCA
[8], Prechelt’s hand designed best NN (HDANNs) [3], EPNet [2], Bennet and
Mangasarian’s [9] MSM1, Schiffmann [10] and acasper [11].

Table 4 shows that PETENN achieved same result as of a manually designed
ANN, which is better than that of FNNCA for breast cancer problem. EPNet
has an absolute 0.00% error rate, which is presumably hard to gain for all real-
world problems. One reason for the similar performance between PETENN and
the manually designed best NN (HDANNs) is that the cancer problem is a
relatively easy problem. Table 5 shows that PETENN has the lowest testing error
rate among all other algorithms for the heart disease problem. It outperforms
the rest by quite a significant margin. Table 6 shows that PETENN has earned
testing accuracy better than that by Prechelt and same as EPNet for diabetes

Table 4. Comparing PETENN with other works for the breast cancer problem

PETENN FNNCA HDANNs EPNet
Testing Error Rate 0.01149 0.0145 0.0115 0.0
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Table 5. Comparing PETENN with other works for the heart disease problem

PETENN MSM1 HDANNs EPNet acasper
Testing Error Rate 0.02667 0.1653 0.1478 0.1323 0.1696

Table 6. Comparing PETENN with other works for the diabetes problem

PETENN HDANNs EPNet acasper
Testing Error Rate 0.192708 0.2135 0.19271 0.2031

Table 7. Comparing PETENN with other works for the thyroid problem

PETENN Result by HDANNs EPNet
Schiffmann

Testing Error Rate 0.068 0.025 0.0128 0.0163

problem. According to Table 7, PETENN performs a little bit worse compared
to other approaches due to its failure to exploit the large training dataset.

4 Conclusion

The main contribution of this paper is to explore the genetic approach for evolv-
ing ANNs which surpassed the limitations of previous GA-based approaches.
The representation of the networks and the incorporated sorting technique are
innovative ideas that can solve the permutation problem. A mixed recombina-
tion operator has also been used. Another feature is the automation of addition
or deletion of nodes or links during the recombination process.

PETENN has been tested on a number of benchmark problems that produced
very competitive results compared to other algorithms. PETENN imposes very
few constraints on feasible ANN architectures; thus faces a huge search space
of different ANNs. It can escape from structural local minima due to its global
search capability. The experimental results have shown that PETENN can ex-
plore the ANN space effectively.

As a future work, we plan to develop a similar encoding technique for multiple
hidden layers. This will give the encoding technique a new dimension.
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